Franklin & Marshall

RSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkey

Description: RANDEC Scientific Solution Software Package (RSSSP) "RESINT" v4.44 LE Multi-Factor Non-Linear Regression (using table data) Software => includes 128-bit Binary Mathematics; OS, PC Hardware and File Testing Modules; File Safe Erasing Commands; Data Compression/Decompression Options; Data Encryption/Decryption Possibilities with USB Aladdin HASP Security Key "RESINT" Main Options: - Building approximation functions (regression models), using table data (please see the example below) - Binary mathematics functions (four 128-bit registers OAX, OBX, OCX and ODX; sixteen 128-bit registers stack by default - expandable unlimited within 32-bit RAM range) for addition (ADD), subtraction (SUB), multiplication (MUL), division (DIV), bitwise operations (XNOR,XOR,OR,AND), bits rotation (ROL/ROR), shifting (SHL/SHR), etc. (please see the screen-shot pages next to the pictures) - Testing PC hardware (CPU, FPU, NIC, etc.), Operating System (OS) and files (calculates 16/32-bit CRCs, 128-bit signatures and characters frequencies, displays HEX dumps, etc.) - File safe rewriting with zeros, true random or pseudo-random numbers and erasing commands - File compression and decompression with Huffman and Run-Length Encoding (RLE) algorithm - File encryption and decryption with HASP internal crypto-engine - Historical info about RSX-11M OS and "RESINT" Info: READ_ME.TXT, RES.PDF (English) and "RESINT" internal help system Notes: RANDEC "RESINT" FE ("Full") Edition (not included in this item) - 5th degree equation, unlimited number of experimental points (limited by 32bit RAM access model, about 2147483647 points), 15 factors (dimensions), 20 members. This is the most powerful version of "RESINT" software. RANDEC "RESINT" SE ("Standard") Edition (not included in this item) - 5th degree equation, 100 experimental points (1st "RESINT" version standard for RSX-11M OS in the 1970s), 10 factors (dimensions), 20 members. There are no software upgrade options, sorry.. RANDEC "RESINT" XE ("WinXP") Edition (not included in this item) - 5th degree equation, 100 experimental points (1st "RESINT" version standard for RSX-11M OS in the 1970s), 10 factors (dimensions), 20 members: created for 32-bit Microsoft Windows XP or lower (32-bit Windows 2000, etc.) OS. Not for Microsoft Windows 64-bit operating systems. It may work on 32-bit higher than Windows XP operating systems (we successfully tested RESINT XE Software on 32-bit Windows Vista Home Premium version 6.0.6002 SP2, 32-bit Windows 7 Professional version 6.1.7601 SP1 and 32-bit Windows 8 Professional version 6.2.9200 SP0, but it didn't work on 32-bit Windows 10 any version), but it is at the user's own risk. It is possible to upgrade this program to "RESINT" SE version within one year from the date of purchase. RANDEC "RESINT" UE ("University") Edition (not included in this item) - 5th degree equation, 62 experimental points, 5 factors (dimensions), 20 members. Includes two separate software on one CD: UE32 version, optimized for 32-bit Windows and UE64 - optimized for 64-bit Windows. It is possible to upgrade these two software to "RESINT" both SE and XE versions within one year from the date of purchase. RANDEC "RESINT" LE ("Limited") Edition for USB (Universal Serial Bus) port - 5th degree equation, 13 experimental points, 5 factors (dimensions), 12 members: due to the small number of points, more suitable for multi-factor non-linear regression functions demonstration than practical use - recommended for use of binary math and non-regression related other options. There are no software upgrade options, sorry.. RANDEC "RESINT" LE ("Limited") Edition for LPT (Centronics Parallel) port (not included in this item) - 5th degree equation, 13 experimental points, 5 factors (dimensions), 12 members. Includes two separate software on one CD: LE32 version, optimized for 32-bit Windows and LE64 - optimized for 64-bit Windows. It is possible to upgrade these two software to "RESINT" both "University" UE32 and UE64 versions within one year from the date of purchase and to "RESINT" both SE and XE versions within two years from the date of purchase. Insights into history The original code of “RESINT” was written in the 1970s in algorithmic high-level programming language FORTRAN IV. The author and developer of the program is the legendary computing specialist mathematician Vilnis Eglajs (1938-1993) [1]. The program successfully worked on the so popular and then very modern CM-4 (CM1403) mini computing machines (it is a copy of the Digital Equipment Corporation PDP-11 computing system - cloned and manufactured in the former Eastern Bloc: USSR, Bulgaria and Hungary [2]) in the RSX-11M operating system.At the beginning of the 1980s, the author of these lines, under the leadership of Vilnis Eglajs, recast the “RESINT” program so that it can be used for IBM-compatible, Intel 80x86 architecture-based computer in the Microsoft MS-DOS environment and it was used for scientific research at the August Kirchenstein Institute of Microbiology (Laboratory of Bioengineering and Biophysics), Latvian Academy of Sciences, resulting in the creation of several international publications [3, 4, 5, 6*, 7, 8, 9]. Then, in the 1990 s, the day light seen a version of “RESINT” for Microsoft's Windows 16-bit operating system and later - for 32/64-bit one. Note that all “RESINT” commands (called mnemonics) are unique in the first three characters as for the RSX OS and the most critical parts of software code such as solution of a system of compatible linear equations AX=B, etc. are written in assembler language. “RESINT” method Regression equation quality indicatorsLooking at the quality of the regression equation, two main indicators should be distinguished: accuracy and reliability. The precision of the regression equation is characterized by the mean square deviation (standard deviation) of the table data from the regression equation values at the corresponding points - the smaller the deviation, the higher the accuracy. By increasing the number of coefficients of the regression equation and thus making the equation more complicated, it can unlimitedly reduce the deviation of the output data from the equation. In a boundary case, when the number of coefficients of the equation coincides with the number of output data, it is possible to achieve a complete match of the output data with the values calculated using this regression equation. This regression equation is unlikely to have any meaning because it is unlikely to have good predictive properties: the values calculated in the intersections of the parameter area of the object from actual ones can vary unforgivably.The reliability of the regression equation shall be characterized by the extent to which the deviations calculated at starting-points correspond to the inter-point deviations of the object's parameter room. It becomes understood that the less the number of regression equation coefficients, the higher the credibility of the equation. The good compliance of the regression equation with the output data at a small number of regression coefficients (relative to the set points) indicates that this harmony was achieved due to the structure of the regression equation itself, but not to the recovery of coefficients. Thus, the key indicators of the regression equation are contradictory: one improvement leads to a deterioration of the other. Synthesis of the regression equationIn practice, the following task appears quite often: information about the object is given in the form of a table. Assuming that there is some relationship between the object's parameters and response (feedback), it is necessary to express this relationship mathematically - it is to create an object regression model based on the table data. Existing regression analysis methods, as a rule, require the existence of a regression equation with accuracy up to coefficients, the determination of which also constitutes the main computational work. However, in most cases the structure of the regression equation is unknown a priori. In this case, the use of regression analysis methods is difficult, especially the determined links between the parameters and feedback of the object. The proposed regression synthesis method does not require a priori knowledge of the regression equation structure. As previously mentioned, the approximation function is not predefined, but is synthesized in the process of processing information. The mathematical expression has the following form: mY = ⅀ [Bi * F(X)] i=1 where, m - number of expression members; Bi - coefficients; F - elementary function; X - vector of factors. The elementary function is constructed as follows: NXF(X)= П[Aj+Bj*Xj]*Lk,j J=1 where, NX - number of factors; Aj, Bj - coefficients; Lk,j - integers that can accept both positive and negative values, including zero. The algorithm provides both an automatic selection of the elementary function depending on the number of factors and the results of the information analysis, as well as the analysis of the influence of individual factors and the exclusion of non-essential factors. For more detailed information, please see [10, 11]. "Stroke.." data example (only first 13 data points used) file "RES.DAT" listing below:;OS RSSSP/101E R E S I N T Version LE 4.44(20210130vi0) (C)Copyright 1994-2021 RANDEC Ltd;C:\RSSSP\RESINT\DAT\RES.DAT Sat 30-JAN-2021 19:55:16.302;; You must prepare such 8 lines above data table:;; 1. "OBN/OBJ"-Object(s) name(s) (up to 16 chars each) separated by "|"(#124=$7C); character or horizontal tabulator (#9=$09);; 2. Miscellaneous parameters:;; 1-"YNU" : Number of functions (up to 35..39); 2-"XNU" : Number of variables (up to 5); 3-"MNU" : Magic Number (0-without MGN: "MNU"="PNU"); 4-"ELN" : Maximum length of equation (up to 12 members, 0-all); 5-"VNU" : Number of variants for printing (0-all); 6-"DVN" : Number of deviations for printing (0-all, if "DVN" < 0 then in; addition to deviations printing, writes actual function and data; values at the beginning of result file, e.g. for testing purposes); 7-"CLN" : Number of required values (columns) in data line for reading; (0-all: based on first data line as main one); 8-"PNU" : Number of points (data lines, 4 and more rows) in file for reading (0-all); 9-"DGN" : Number of digits for output floating-point values (0-all);; 3. "FLG"-Flags (0-inactive/false/disabled/"NO", 1-active/true/enabled/"YES"):;; 1-"ASC" : Create unformatted ASCIIZ output file; 2-"FMT" : Use large format for output diagrams; 3-"STA" : Print table of statistics; 4-"ELM" : Print diagram of eliminations; 5-"ERA" : Print eliminated (erased) functions; 6-"DEV" : Print distribution of deviations; 7-"DRW" : Use MS-DOS line-draw characters (flg exception: "2"-use the "Seventies" ones);; 4. "NLY"-Nonlinear deformation code(s) for Y column(s):;; 0 - Without deformation : Y=Y; 1 - Natural logarithm : Y=LN(Y); 2 - Square root : Y=SQRT(Y); 3 - Decimal logarithm : Y=LOG10(Y); 4 - Double square root : Y=SQRT(SQRT(Y)); 5 - Exponent : Y=EXP(Y);; 5. "NLX"-Nonlinear deformation code(s) for X column(s):;; 0 - Without deformation : X=X; 1 - Natural logarithm : X=LN(X); 2 - Square root : X=SQRT(X); 3 - Decimal logarithm : X=LOG10(X); 4 - Double square root : X=SQRT(SQRT(X)); 5 - Exponent : X=EXP(X);; WARNING: Deformation function for required data value(s) is NOT used; if this value is < = 0 or the 5678 is exceeded for exponent; function;; 6. "NRM/NOR"-Coefficient(s) of normalization for X column(s):;; -2 - Without normalization (inverse functions disabled); -1 - Without normalization (inverse functions enabled); 0 - Normalization within +0.5 through +1.5; 1 - Normalization within +0.0 through +1.0; 2 - Normalization within -1.0 through +1.0;; 7. "KYC"-Y column(s) number(s) (1 through 40, equal ones possible);; 8. "KXC"-X column(s) number(s) (1 through 40);; Then follows data table;; Maximum data file line length : 254 characters; Maximum number of columns ("CLN"): 40 numbers in line; Floating-point numbers precision : 2 through 18 decimal digits; Calculations results file(s) : RESINT01.REZ through RESINT39.REZ; Unformatted ASCIIZ output file(s): ASCIIZ01.REZ through ASCIIZ39.REZ;; Please use ";" character for the commentary lines or to disable data row(s);Stroke..; 23 4 5 678 9; ; ; ; ;;; ; ;1521204 4621700111100000000000012345 6;; There are two masses M1 and M2 moving to one direction with speeds V1 and V2, V1 > V2 (see picture below);; V1 V2; O--> o->; M1 M2;; Let's simulate energy W of partially elastic stoke: 0 < k < 1, where k - coefficient;; There is absolutely inelastic stroke if k = 0 and absolutely elastic one if k = 1 (in this case W = 0);; There is no stroke if V1 = V2 and W = 0 now (please see the formula in the next row); +-----------------------------------------------------------+; Theoretical formula: ! W = (M1 * M2) * (V1 - V2)^2 * (1 - k^2) / (2 * (M1 + M2)) !; +-----------------------------------------------------------+; Let's assume that we have five M1 and five M2 masses => 1kg, 2kg, 3kg, 4kg and 5kg;; Let's assume that we have speeds V1 and V2 => 0 through 10m/s (0, 3, 5, 8 and 10); and coefficient k => 0 through 1 (0.0, 0.3, 0.5, 0.8 and 1.0);; The total number of experiments: 5 * 5 * 5 * 5 * 5 = 5^5 = 3125 points;; Let's create the plan for 21 experimental points to save 3125 - 21 = 3104 experiments;; | M1 M2 V1 V2 k | W; | kg kg m/s m/s - | J; ____|_______________________|_______; | |; 1 | 5 3 5 10 1.0 | _; | |; 2 | 1 4 5 8 0.0 | _; | |; 3 | 4 3 0 8 0.3 | _; | |; 4 | 1 1 8 8 0.5 | _; | |; 5 | 2 1 8 0 0.3 | _; | |; 6 | 5 3 3 0 0.8 | _; | |; 7 | 3 1 0 5 0.8 | _; | |; 8 | 3 4 10 10 0.5 | _; | |; 9 | 5 5 8 8 0.5 | _; | |; 10 | 3 2 0 3 0.0 | _; | |; 11 | 1 4 0 3 0.5 | _; | |; 12 | 3 5 3 3 0.0 | _; | |; 13 | 5 1 5 3 0.3 | _; | |; 14 | 4 2 10 5 0.8 | _; | |; 15 | 4 2 5 10 0.3 | _; | |; 16 | 1 3 3 10 0.8 | _; | |; 17 | 2 5 10 0 0.5 | _; | |; 18 | 2 4 8 5 1.0 | _; | |; 19 | 3 3 10 5 0.0 | _; | |; 20 | 4 5 3 5 1.0 | _; | |; 21 | 2 2 5 0 1.0 | _; ____|_______________________|_______;; RANDEC PLAN 1.00 Thu 05-NOV-1998 10:38:34.15;; Let's assume V1 = V2 and V2 = V1 if V1 < V2;; Let's calculate corresponding W values with formula instead of the real experiment;; Let's find correlation function W=F(M1,M2,V1,V2,k);;=============================================================;W M1 M2 V1 V2 k;[J] [kg] [kg] [m/s] [m/s] [-];1st 2nd 3rd 4th 5th 6th;============================================================= 0.0000 5.0000 3.0000 5.0000 10.0000 1.0000 3.6000 1.0000 4.0000 5.0000 8.0000 0.000049.9200 4.0000 3.0000 0.0000 8.0000 0.3000 0.0000 1.0000 1.0000 8.0000 8.0000 0.500019.4133 2.0000 1.0000 8.0000 0.0000 0.3000 3.0375 5.0000 3.0000 3.0000 0.0000 0.8000 3.3750 3.0000 1.0000 0.0000 5.0000 0.8000 0.0000 3.0000 4.0000 10.0000 10.0000 0.5000 0.0000 5.0000 5.0000 8.0000 8.0000 0.5000 5.4000 3.0000 2.0000 0.0000 3.0000 0.0000 2.7000 1.0000 4.0000 0.0000 3.0000 0.5000 0.0000 3.0000 5.0000 3.0000 3.0000 0.0000 1.5167 5.0000 1.0000 5.0000 3.0000 0.3000 6.0000 4.0000 2.0000 10.0000 5.0000 0.800015.1667 4.0000 2.0000 5.0000 10.0000 0.3000 6.6150 1.0000 3.0000 3.0000 10.0000 0.800053.5714 2.0000 5.0000 10.0000 0.0000 0.5000 0.0000 2.0000 4.0000 8.0000 5.0000 1.000018.7500 3.0000 3.0000 10.0000 5.0000 0.0000 0.0000 4.0000 5.0000 3.0000 5.0000 1.0000 0.0000 2.0000 2.0000 5.0000 0.0000 1.0000;------------------------------------------------------------- "Stroke.." calculations results example file "RESINT01.REZ" listing below:OS RSSSP/101E RESINT LE v4.44(20210130vi0) Copyright(C)1994-2021 RANDEC Ltd. Sat 30-JAN-2021 19:55.29C:\RSSSP\RESINT\DAT\RES.DAT=>C:\RSSSP\RESINT\REZ\RESINT01.REZ"MATISS PARAUDZENS" + 80686(3000MHz)"Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz""Microsoft Windows 7 Professional (6.1.7601) 32-bit_x86" YNU(1)XNU = 5 ELN = 12 VNU = 4 MNU = 21 NRM: 0 0 0 0 0 DGN = 7 CLN = 6 PNU = 13 NLX: 0 0 0 0 0 DVN = 4 NLY: 0 NORMALIZATION COEFFICIENTS KXC A B XMin XMax 1 2 2.500000E-0001 2.500000E-0001 1. 5. 2 3 2.500000E-0001 2.500000E-0001 1. 5. 3 4 5.000000E-0001 1.000000E-0001 0. 10. 4 5 5.000000E-0001 1.000000E-0001 0. 10. 5 6 5.000000E-0001 1.000000 0. 1. Y0 = 6.843269 SIGMA = 13.94159 KYC = 1 Stroke.. CORRELATION: 96.45 % SIGMA: 1.648623E-0001 12|==================|=================|==================|=================|| COEFFICIENT | FUNCTION CODE | COEFFICIENT | FUNCTION CODE ||==================|=================|==================|=================|| -44.55696 | 0 0 0 0 0 | -26.98877 | -3 0 0 0 0 || 55.81523 | -3 4 0 0 0 | 25.57035 | -4 3 0 0 0 || -6.179724 | -2 5 0 0 0 | 13.38461 | -4 1 0 0 0 || -12.73854 | 5 5 0 0 0 | 9.666778 | -1 5 0 0 0 || -4.116375 | -5 -1 0 0 0 | -6.194452 | 2 3 0 0 0 || -2.736293 | -2 1 0 0 0 | -1.488775 | 1 2 0 0 0 ||__________________|_________________|__________________|_________________| CORRELATION FOR EACH EXPRESSION, %: 1- 96.45 2- 95.32 3- 91.75 4- 85.67 5- 81.21 6- 74.75 7- 66.02 8- 55.40 9- 51.67 10- 47.90 11- 11.09 Stroke.. CORRELATION: 47.90 % SIGMA: 7.263379 10|==================|=================|==================|=================|| COEFFICIENT | FUNCTION CODE | COEFFICIENT | FUNCTION CODE ||==================|=================|==================|=================|| -68.76999 | 0 0 0 0 0 | 36.19656 | -4 5 0 0 0 || 29.87599 | -5 4 0 0 0 | | ||__________________|_________________|__________________|_________________| DISTRIBUTION OF DEVIATIONS: I+ + ++ + O + + ++ +I 3/ -13.08817 Y = 49.92 7/ 15.18612 Y = 3.375 13/ -3.984449 Y = 1.5167 1/ 5.442177 Y = 0. 4/ -2.697437 Y = 0. 11/ 5.116999 Y = 2.7 8/ -2.697437 Y = 0. 5/ 3.416051 Y = 19.4133 Stroke.. CORRELATION: 95.32 % SIGMA: 6.519082E-0001 2 |==================|=================|==================|=================|| COEFFICIENT | FUNCTION CODE | COEFFICIENT | FUNCTION CODE ||==================|=================|==================|=================|| -47.56560 | 0 0 0 0 0 | -26.68648 | -4 0 0 0 0 || 55.67200 | -4 5 0 0 0 | 25.97000 | -5 4 0 0 0 || -5.922026 | -3 6 0 0 0 | 12.95771 | -5 2 0 0 0 || -12.88706 | 6 6 0 0 0 | 10.18766 | -2 6 0 0 0 || -3.695748 | -6 -2 0 0 0 | -6.702941 | 3 4 0 0 0 || -2.292095 | -3 2 0 0 0 | | ||__________________|_________________|__________________|_________________| DISTRIBUTION OF DEVIATIONS: I+ + +++ O+ + + +I 8/ -6.105674E-0001 Y = 0. 9/ 6.295843E-0001 Y = 0. 12/ -1.495806E-0001 Y = 0. 4/ 1.357863E-0001 Y = 0. 6/ -8.525635E-0002 Y = 3.0375 10/ 1.278643E-0001 Y = 5.4 13/ -7.004378E-0002 Y = 1.5167 5/ 5.317278E-0002 Y = 19.4133 Stroke.. CORRELATION: 91.75 % SIGMA: 1.150264 3 |==================|=================|==================|=================|| COEFFICIENT | FUNCTION CODE | COEFFICIENT | FUNCTION CODE ||==================|=================|==================|=================|| -56.62043 | 0 0 0 0 0 | -25.70090 | -4 0 0 0 0 || 56.43527 | -4 5 0 0 0 | 26.97476 | -5 4 0 0 0 || -7.202055 | -3 6 0 0 0 | 12.84688 | -5 2 0 0 0 || -12.31074 | 6 6 0 0 0 | 11.73859 | -2 6 0 0 0 || -3.053895 | -6 -2 0 0 0 | -4.994934 | 3 4 0 0 0 ||__________________|_________________|__________________|_________________| DISTRIBUTION OF DEVIATIONS: I+ + + + ++ + O+ + + + + +I 12/ -9.887060E-0001 Y = 0. 13/ 9.325778E-0001 Y = 1.5167 4/ -6.313731E-0001 Y = 0. 9/ 7.805650E-0001 Y = 0. 8/ -5.329355E-0001 Y = 0. 11/ 6.379138E-0001 Y = 2.7 6/ -3.681799E-0001 Y = 3.0375 2/ 4.562868E-0001 Y = 3.6 Stroke.. CORRELATION: 74.75 % SIGMA: 3.519901 6 |==================|=================|==================|=================|| COEFFICIENT | FUNCTION CODE | COEFFICIENT | FUNCTION CODE ||==================|=================|==================|=================|| -75.26178 | 0 0 0 0 0 | -24.20348 | -4 0 0 0 0 || 57.56636 | -4 5 0 0 0 | 25.68200 | -5 4 0 0 0 || 15.32125 | -5 2 0 0 0 | -13.69164 | 6 6 0 0 0 || 9.551546 | -2 6 0 0 0 | | ||__________________|_________________|__________________|_________________| DISTRIBUTION OF DEVIATIONS: I+ ++ + ++ O + + + +I 11/ -3.224081 Y = 2.7 7/ 5.529364 Y = 3.375 8/ -2.075003 Y = 0. 2/ 3.547821 Y = 3.6 3/ -1.956195 Y = 49.92 13/ 2.232481 Y = 1.5167 1/ -1.927791 Y = 0. 4/ 6.727566E-0001 Y = 0. Stroke.. STATISTICS|=============|======|==================|==================|=================|| CORRELATION | EL | SIGMA | COEFFICIENT | ELIMIN.FUNCTION ||=============|======|==================|==================|=================|| 1- 96.45 | 12 | 4.945868E-0001 | -1.488775 | 2 3 0 0 0 || 2- 95.32 | 11 | 6.519082E-0001 | -2.292095 | -3 2 0 0 0 || 3- 91.75 | 10 | 1.150264 | -4.994934 | 3 4 0 0 0 || 4- 85.67 | 9 | 1.998081 | -2.223849 | -6 -2 0 0 0 || 5- 81.21 | 8 | 2.619385 | -3.803847 | -3 6 0 0 0 || 6- 74.75 | 7 | 3.519901 | 9.551546 | -2 6 0 0 0 || 7- 66.02 | 6 | 4.737531 | 7.453943 | -5 2 0 0 0 || 8- 55.40 | 5 | 6.217349 | -8.498613 | -4 0 0 0 0 || 9- 51.67 | 4 | 6.737910 | -5.127381 | 6 6 0 0 0 || 10- 47.90 | 3 | 7.263379 | 29.87599 | -5 4 0 0 0 || 11- 11.09 | 2 | 12.39519 | 12.24372 | -4 5 0 0 0 ||_____________|______|__________________|__________________|_________________| DIAGRAM OF ELIMINATIONS: N 10 20 30 40 50 60 70 80 90 100 ELIMINATED FUNCTION 12|------|------|------|------|------|------|------|------|------|---O--| 2 3 0 0 0 11|------|------|------|------|------|------|------|------|------|--O---| -3 2 0 0 0 10|------|------|------|------|------|------|------|------|------|O-----| 3 4 0 0 0 9|------|------|------|------|------|------|------|------|--O---|------| -6 -2 0 0 0 8|------|------|------|------|------|------|------|------O------|------| -3 6 0 0 0 7|------|------|------|------|------|------|------|--O---|------|------| -2 6 0 0 0 6|------|------|------|------|------|------|---O--|------|------|------| -5 2 0 0 0 5|------|------|------|------|------|--O---|------|------|------|------| -4 0 0 0 0 4|------|------|------|------|------|O-----|------|------|------|------| 6 6 0 0 0 3|------|------|------|------|----O-|------|------|------|------|------| -5 4 0 0 0 2|------O------|------|------|------|------|------|------|------|------| -4 5 0 0 0 0 10 20 30 40 50 60 70 80 90 100 "Stroke.." elapsed time 79ms44us395ns (Epsilon_64: 5.42101086242752217E-0020), thanks! The latest available "RESINT" version will be included in the software CD Free USB (Universal Serial Bus) port is required to attach the Aladdin HASP (Hardware Against Software Piracy) Security Key 1. https://lv.wikipedia.org/wiki/Vilnis_Egl%C4%81js 2. https://en.wikipedia.org/wiki/PDP-11 3. Vanags J. J., Rikmanis M. A., Ushkans E. J., Viesturs U. E. (1990). "Stirring Characteristics in Bioreactors". American Institute of Chemical Engineers (AIChE) Journal, 1361-1369. 4. Rikmanis M. A., Vanags J. J., Ushkans E. J., Viesturs U. E. (1987). "Distribution of Energy Introduced into Bioreactors with Various Constructions of Stirrers and Rheological Properties of the Liquid". Abstr., Cong. on Biotechnol., Amsterdam, 110. 5. Ruklisha M. P., Vanags J. J., Rikmanis M. A., Toma M. K., Viesturs U. E. "Biochemical Reactions of Brevibacterium flavum Depending on Medium Stirring Intensity and Flow Structure". Acta Biotechnologica 9 (1989) 6, 565-575, Akademie-Verlag Berlin. 6. Smite I. A., Eglajs, V. O., Ruklisa M. P., Viesturs U. E. "Biosynthesis of Polyribonucleotide phosphorylase and Polyribonucleotides by E. coli". Acta Biotechnologica 2 (1982) 4, 359-368. 7. M. Rikmanis, J. Vanags, E. Ushkans and U. Viesturs: “Stirring characteristics in bioreactors”, In: Proc. Congress CHISA’ 87, 1987, paper E9-137. 8. J. Vanags, M. Rikmanis, E. Uschkans, J. Grants and U. Viesturs: “Entwicklung eines Gerätes zur Messung der Vermichungsintensität in Bioreaktoren”, 4. Heiligenstädter Kolloquium Wissenschaftliche Geräte für die Biotechnologie, DDR, Heiligenstadt, 1988, pp. 282–287 (in German). 9. M. Rikmanis, J. Vanags, J. Grants and E. Ushkans: “The optimum stirring regime during microorganism cultivation”, In: Proc. 10th Congress CHISA’ 90, 1990, paper J4-3. 10. Eglajs, V. (1981). "Approximation of table data by multidimensional regression equation" (Russian). Problems of Dynamics and Strengths. 39 (Riga: Zinatne Publishing House): 120-125. 11. Eglajs, V. O. (1980). "Synthesis of a Regression Model of an Object on the Basis of Table Data" (Russian). Izv. AN LatvSSR, Ser. Phiz. i Tekhn. Nauk, 4, 107. * Note: The original "RESINT" version on a CM-4 computer in the RSX-11M operating system was used for calculations Additional items and information can be found at "https://www.ebay.com/usr/randec_lettonie" or please enter "RSSSP " or "RESINT" or "RSSSP RESINT" in the eBay search field, thanks!

Price: 199.99 USD

Location: RIGA, default

End Time: 2024-11-19T20:15:27.000Z

Shipping Cost: 18.78 USD

Product Images

RSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkeyRSSSP RESINT LE Multi-Factor Non-Linear Regression,Binary Math,Encryption+USBkey

Item Specifics

All returns accepted: ReturnsNotAccepted

Format: CD with USB Aladdin HASP Security Key

Type: Regression,BinaryMath,FileEncryption/Compression..

MPN: RSSSP

Binary Mathematics Stack Size: Sixteen 128bit regs (default),expandable unlimited

HASP Hardware Manufacturer: Aladdin Knowledge SystemsLTD (acquired by SafeNet => Gemalto)

Number of Experimental Points: 13

Software Version: 32bit RESINTv4.44LE-LimitedEdition for 32/64bitWin

Platform: Microsoft Windows for Intel CPU x86 architecture

Software Manufacturer/Country: RANDEC LTD / Republic of LATVIA (European Union)

HASP Security Key Connection Interface: USB Type A (Lines Used: power, ground, 2 for data)

Number of Factors (dimensions): 5 variables

Internal Commands Count (ICC): 265 mnemonics

Binary Mathematics Registers Count: Four 128-bit (Octa Word) regs - OAX, OBX, OCX, ODX

Brand: RANDEC Scientific Solution Software Package(RSSSP)

Maximum Power/Expression Length,elements: 5th degree equation / 12 members

Compatibility: Windows 95/98/Me/2000/XP/Vista/7/8/8.1/10 32/64bit

Recommended

Nike Air Jordan 1 Low SE Shoes White Armory Navy HM3711-144 Men's Sizes NEW
Nike Air Jordan 1 Low SE Shoes White Armory Navy HM3711-144 Men's Sizes NEW

$98.59

View Details
Nike Air Max Plus TN3 Men's Shoes Running Trainers "Black Red Yellow"
Nike Air Max Plus TN3 Men's Shoes Running Trainers "Black Red Yellow"

$82.90

View Details
Nike Air Jordan 11 Retro  Size 10.5 378037100 White/black-concord
Nike Air Jordan 11 Retro Size 10.5 378037100 White/black-concord

$150.00

View Details
Nike Kyrie Flytrap 6 Black White Athletic Shoes Men's Size 8-13 (DM1125-001)
Nike Kyrie Flytrap 6 Black White Athletic Shoes Men's Size 8-13 (DM1125-001)

$59.99

View Details
nike sock dart
nike sock dart

$25.00

View Details
Nike Waffle Debut (DH9552-001) Black With White, Mens 11 Used
Nike Waffle Debut (DH9552-001) Black With White, Mens 11 Used

$25.00

View Details
Nike Air Jordan 1 Low Shoes White Metallic Gold Black 553558-172 Men's Sizes NEW
Nike Air Jordan 1 Low Shoes White Metallic Gold Black 553558-172 Men's Sizes NEW

$93.89

View Details
Nike Air Max Command Wolf Grey - Men's Size 8.5
Nike Air Max Command Wolf Grey - Men's Size 8.5

$60.00

View Details
Nike Air Jordan 4 "Oxidized Green" Men's Shoes Trainer
Nike Air Jordan 4 "Oxidized Green" Men's Shoes Trainer

$99.99

View Details
Nike Men's Giannis Zoom Freak 4 Sneaker, White/Oxygen Purple/Stadium Green, 12
Nike Men's Giannis Zoom Freak 4 Sneaker, White/Oxygen Purple/Stadium Green, 12

$52.00

View Details